

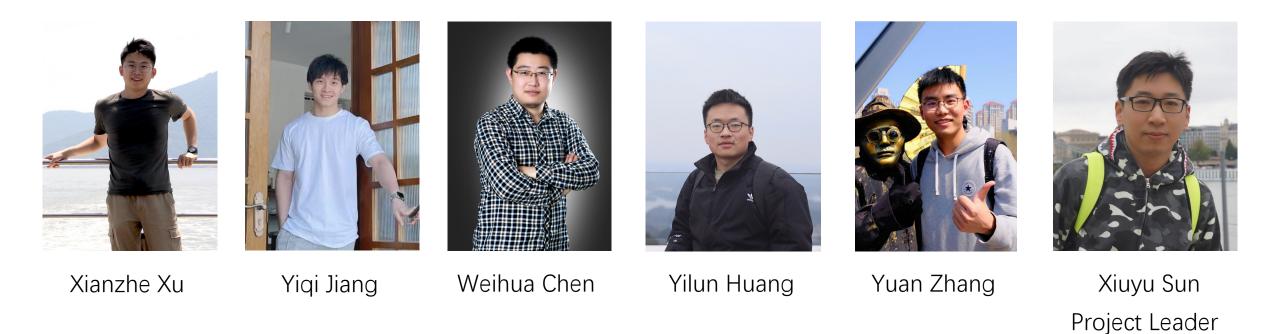
A Fast, Accurate, and Efficient Object Detection Framework

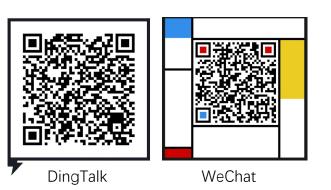
DAMO-YOLO

from Alibaba Group

TinyML Team, Data Analytics and Intelligence Lab, DAMO Academy, Alibaba Group

Contributors of DAMO-YOLO from TinyML Team





DAMO-YOLO : A Report on Real-Time Object Detection Design

Xianzhe Xu^{*}, Yiqi Jiang^{*}, Weihua Chen^{*}, Yilun Huang^{*}, Yuan Zhang^{*}, Xiuyu Sun[†] Alibaba Group

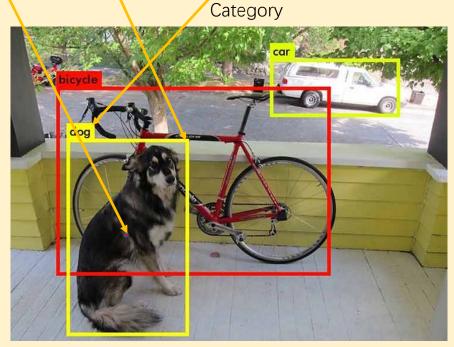
DAMO-YOLO

from Alibaba Group

- Introduction to Object Detection
- Recent Projects on Object Detection
- Technology Value of DAMO-YOLO
- Application Value of DAMO-YOLO
- Implementation of DAMO-YOLO

Introduction to Object Detection

Definition: locating objects of interest with their positions and sizes in images or spaces



An example of object detection

Inputs: Images/Videos/Point Clouds **Outputs**: Categories & Bounding Boxes

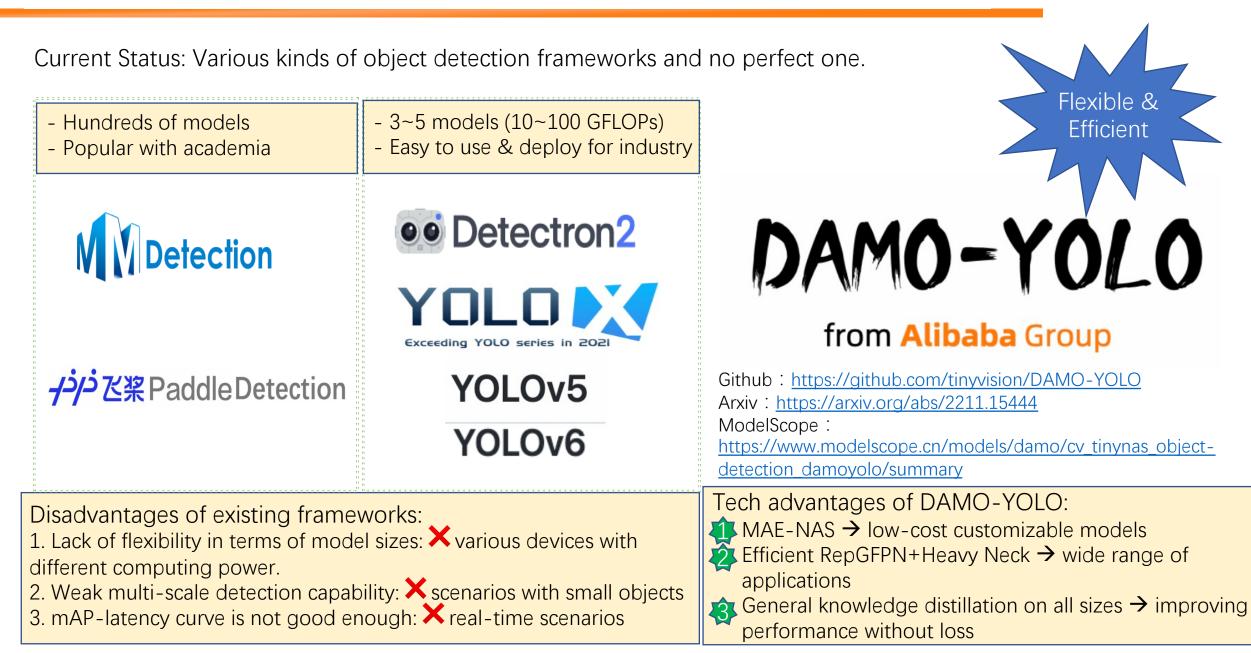
Application Value:

- Diverse application scenarios
- Fundamental task of many CV applications AutoPilot Harbor Management

Intrusion Detection

Recent Projects on Object Detection

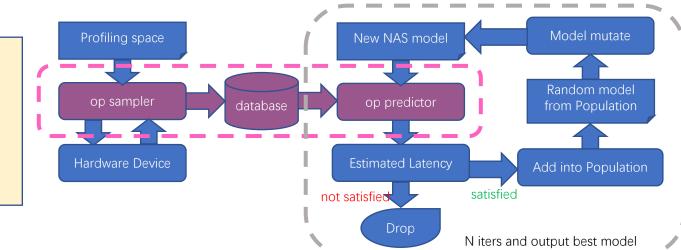
ECAlibaba Group 阿里巴巴集団



Technology Value of DAMO-YOLO

Ability to get low-cost customizable models:

- Search optimal model based on our MAE-NAS (ZeroShot)
 - Low-cost: no need for training
 - Improving utilization of devices: search with FLOPs/latency as budgets
- Latency database construction scheme for different devices:
 - Support T4/V100 GPU, IoT chips, etc.



Seach optimal model based on latency budget

DAMO-YOLO

from Alibaba Group

Tech advantages of DAMO-YOLO:

 \clubsuit MAE-NAS \rightarrow low-cost customizable models

- ② Efficient RepGFPN+Heavy Neck → wide range of applications
- ③ General knowledge distillation on all sizes → improving performance without loss

DAMO-YOLO

from Alibaba Group

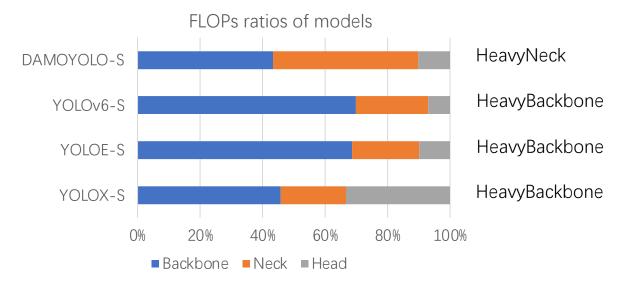
Tech advantages of DAMO-YOLO:

4 MAE-NAS \rightarrow low-cost customizable models

- Efficient RepGFPN+Heavy Neck → wide range of applications
- General knowledge distillation on all sizes → improving performance without loss

EfficientRepGFPN+HeavyNeck: wide range of applications

- Efficient RepGFPN: efficient multi-scale feature fusion
- HeavyNeck: redefine the FLOPs ratios of models
- Powerful multi-scale detection performance: wide range of applications



DAMO-YOLO

from Alibaba Group

Tech advantages of DAMO-YOLO:

4 MAE-NAS \rightarrow low-cost customizable models

- ♣ Efficient RepGFPN+Heavy Neck → wide range of applications
- General knowledge distillation on all sizes → improving performance without loss

General knowledge distillation on all sizes

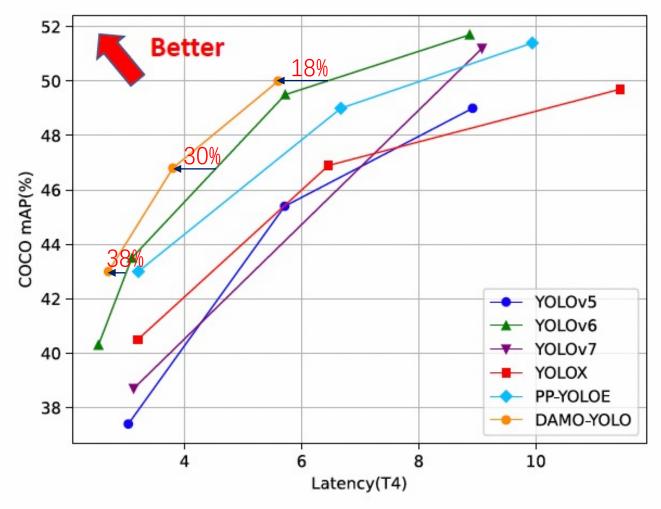
- Few studies on distillation of YOLO series in both academia and industry
- Lack of distillation scheme on small models
 - FGD: distillation on YOLOX-M
 - YOLOv6: distillation on Large and Medium sizes
- Distillation in DAMO-YOLO
 - Significant improvements on models of all sizes
 - Parameter-tuning-free: one-click script to distill
 - Feature-based distillation + unbiased BN + AlignModule: robust to heterogeneous models

Distillation performance on different model scales

Method	Size	Latency(ms)	GFLOPs	Params(M)	AP
DAMO-YOLO-T	640	2.78	18.1	8.5	41.8
DAMO-YOLO-T*	640	2.78	18.1	8.5	43.0
DAMO-YOLO-S	640	3.83	37.8	16.3	45.6
DAMO-YOLO-S*	640	3.83	37.8	16.3	46.8
DAMO-YOLO-M	640	5.62	61.8	28.2	48.7
DAMO-YOLO-M*	640	5.62	61.8	28.2	50.0

Application Value of DAMO-YOLO

Comparison in Latency-mAP trade-off



- 3.Params: 6%~50% less
- Significant improvements on all sizes & wide range of application

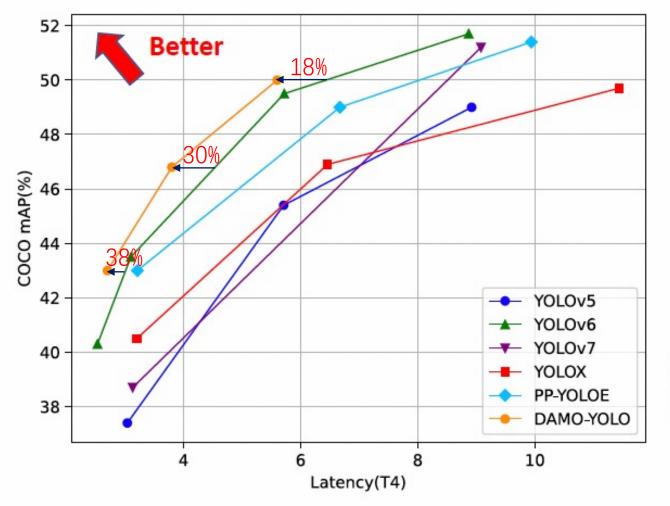
Method	Size	Latency(ms)	GFLOPs	Params(M)	AP	AP^{50}	AP^{75}	$\mathbf{A}\mathbf{P}^S$	\mathbf{AP}^M	AP^L
YOLOX-T	416	1.78	6.5	5.1	32.8	-	-	-	-	-
YOLOX-S	640	3.20	26.8	9.0	40.5	-	-	-	-	-
YOLOX-M	640	6.46	73.8	25.3	46.9	-	-	-	-	-
YOLOX-L	640	11.44	155.6	54.2	49.7	-	-	-	-	-
YOLOv5-N	640	2.23	4.5	1.9	28.0	45.7	-	-	-	-
YOLOv5-S	640	3.04	16.5	7.2	37.4	56.8	-	-	-	-
YOLOv5-M	640	5.71	49.0	21.2	45.4	64.1	-	-	-	-
YOLOv5-L	640	8.92	109.1	46.5	49.0	67.3	-	-	-	-
YOLOv6-T	640	2.53	36.7	15.0	40.3	56.6	-	-	-	-
YOLOv6-S	640	3.10	44.2	17.0	43.5	60.4	-	-	-	-
YOLOv6-M*	640	5.72	82.2	34.3	49.5	66.8	-	-	-	-
YOLOv6-L [*]	640	9.87	144.0	58.5	52.5	70.0	-	-	-	-
YOLOv7-T-silu	640	3.13	13.7	6.2	38.7	56.7	41.7	18.8	42.4	51.9
YOLOv7	640	9.08	104.7	36.9	51.2	69.7	55.9	31.8	55.5	65.0
YOLOE-S	640	3.21	17.4	7.9	43.0	60.5	46.6	23.2	46.4	56.9
YOLOE-M	640	6.67	49.9	23.4	49.0	66.5	53.0	28.6	52.9	63.8
YOLOE-L	640	9.94	110.1	52.2	51.4	68.9	55.6	31.4	55.3	66.
DAMO-YOLO-T	640	2.78	18.1	8.5	41.8	58.0	45.2	23.0	46.1	58.
DAMO-YOLO-T*	640	2.78	18.1	8.5	43.0	59.4	46.6	23.3	47.4	61.0
DAMO-YOLO-S	640	3.83	37.8	16.3	45.6	61.9	49.5	25.9	50.6	62.5
DAMO-YOLO-S*	640	3.83	37.8	16.3	46.8	63.5	51.1	26.9	51.7	64.9
DAMO-YOLO-M	640	5.62	61.8	28.2	48.7	65.5	53.0	29.7	53.1	66.
DAMO-YOLO-M*	640	5,62	61.8	28.2	50.0	66.8	54.6	30.4	54.8	67.0

Performance comparison with SOTA detectors

Application Value of DAMO-YOLO

ECAlibaba Group 阿里巴巴集団

Comparison in Latency-mAP trade-off



1.Fast & less FLOPs: wide range of application
2.Customize models for FLOPS: improving utilization of devices
3.*DAMO-YOLO is available on ModelScope: easy to use!

from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
object_detect = pipeline(Tasks.image_object_detection,model='damo/cv_tinynas_object_detection_damoyolo')
img_path ='https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/image_detection.jpg'
result = object_detect(img_path)

Github : <u>https://github.com/tinyvision/DAMO-YOLO</u>

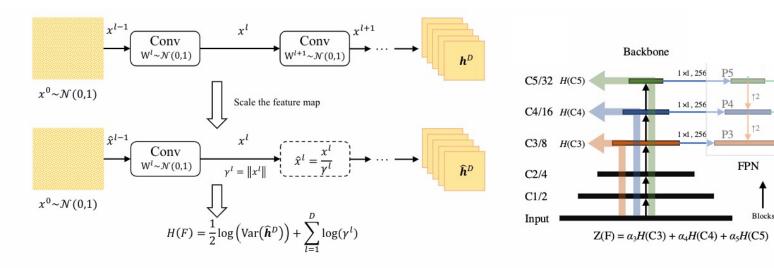
Arxiv : <u>https://arxiv.org/abs/2211.15444</u>

ModelScope : https://www.modelscope.cn/models/damo/cv_tinynas_object-detection_damoyolo/summary

- Implementation of DAMO-YOLO
 - Low-cost customizable models—MAE-NAS
 - Efficient multi-scale feature fusion——Efficient RepGFPN
 - Knowledge distillation on models of all sizes

Low-cost customizable models—MAE-NAS (ICML2022)

- Idea: formulate a deep network as an information system endowed with continuous state space, and maximize its entropy
- Formulation:
 - The topology of a network F can be abstracted as a graph G = (V, E): vertex set V -- features, edge set E -- operators
 - h(v), h(e) are values endowed with each vertex and edge. $S = \{h(v), h(e): \forall v \in V, \forall e \in E\}$ defines the continuous state space of F
 - Entropy H(S) measures the total information contained in the system (network) F
 - We only focus on the feature expressivity (information contained in vertices), which is $H(S_{\nu})$
- Method:
 - According to **Differential Entropy of Gaussian Distribution** and **Gaussian Entropy Upper Bound Theorem**, we can calculate feature map variance to estimate entropy $H(S_v)$ and get Gaussian entropy upper bound when they obey the Gaussian distribution
 - Therefore, all parameters are initialized by standard Gaussian distribution N(0,1), and a noise image is generated with it as well
 - The (Gaussian upper bound) entropy of $F: H(F) = \frac{1}{2} \log \left(Var(\hat{h}^D) \right) + \sum_{l=1}^{D} \log(\gamma^l)$
 - Multi-scale entropy of $F: Z(F) \coloneqq \alpha_1 H(C1) + \alpha_2 H(C2) + \dots + \alpha_5 H(C5), \alpha = [0, 0, 1, 1, 6]$



(a) Single-scale entropy score with rescaling

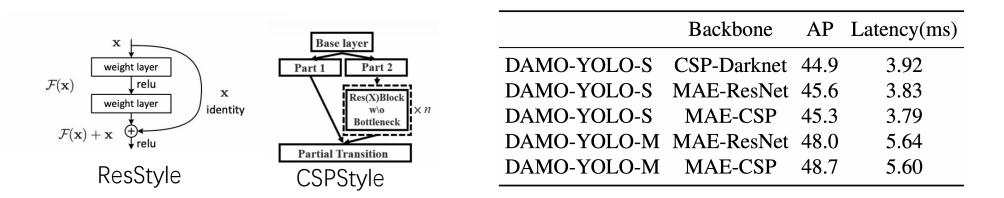
(b) Multi-scale entropy score for detection

Head

UpSample

Low-cost customizable models—MAE-NAS (ICML2022)

- NAS framework: Evolutionary Algorithm
 - Use multi-scale entropy of networks as the performance proxy
 - Various search budgets: FLOPs, Params, Latency, Layers, etc.
 - Fine-grained mutation: kernel size, width, depth, block type, etc.
 - High scalability: add customized block types easily according to the official tutorial
 - **Xzero-shot & GPU-free**: requires no data and no GPU, and only takes tens of minutes on CPUs
- MAE-NAS Backbone for DAMO-YOLO
 - For the goal of real-time applications, we search for T/S/M models using different latency budgets
 - Wrap the searched basic structure: smaller sizes -- ResStyle, larger sizes -- CSPStyle。



Paper: ICML2022, *MAE-DET: Revisiting Maximum Entropy Principle in Zero-Shot NAS for Efficient Object Detection* Tutorial: NAS for DAMO-YOLO (in CN): <u>https://github.com/alibaba/lightweight-neural-architecture-search/blob/main/scripts/damo-yolo/Tutorial_NAS_for_DAMO-YOLO_cn.md</u>

TinyNAS toolbox is available on ModelScope now!

- Based on zero/one-shot methods, you can get searched results in a few minutes
- Support various tasks and scenarios: classification, detection, Chinese CLIP
- Customizable budgets: Params, FLOPs, Layers, etc.
- Easy to load searched structures into your own networks~

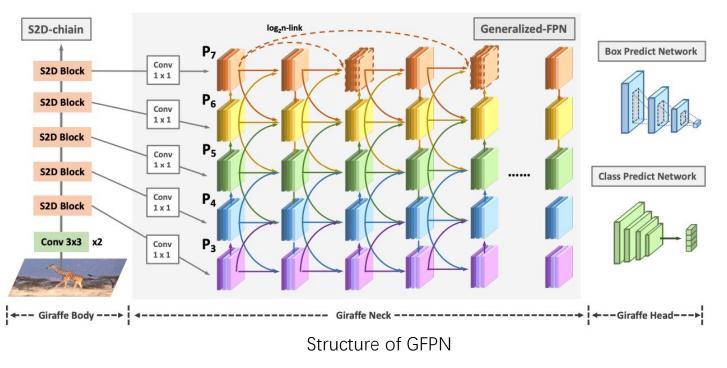
分类 检测 中文CLIP ← 任务类型选择						
TinyNAS						
TinyNAS 是一个高性能的神经结构搜索(NAS)框架,用于在GPU和移动设备上自动设计具有利 NAS 方法依靠网络前向推理即可评估网络表达能力,显著降低网络搜索耗时;MAD-NAS 从数句		1度和高推理速度的深度神经网络。其中,TinyNAS 针对 CNN 网络在分类任务上有着明显的优势——Zen- 『估网络表达能力,无需依赖GPU资源,进一步加速网络搜索性能。				
Class Num	10	下载链接				
Max Params (M)	11.69	https://vcs-dockers.oss-cn-hangzhou.aliyuncs.com/TinyNas ^e ar.gz? OSSAccessKeyId= f&Expires=1670209109&Signature=				
Max FLOPs (M)	1690					
Max Layers	49	下载模型				
Iter Num	1000					
How many networks do you want?	3	と思想には、「「」というないで、「「」というないです。「「」」というないです。				
		自定义结构搜索限制				
清除 提交						

Github : <u>https://github.com/alibaba/lightweight-neural-architecture-search</u>

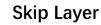
ModelScope: <u>https://modelscope.cn/studios/damo/TinyNAS/summary</u>

Improving the multi-scale detection capability——GFPN (ICLR2022)

- Multi-scale detection capability depends on multi-scale feature fusion
- GFPN process high-level semantic and low-level spatial information at the same priority: beneficial to multi-scale feature fusion
- Feature reuse and more connections improve the performance, but it makes the network parallel inefficient: efficient in FLOPs but inefficient in Latency

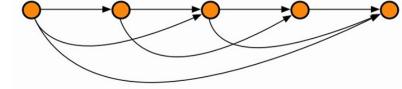


- Paper: GiraffeDET: A Heavy-Neck Paradigm for Object Detection, arXiv
- Code: <u>https://github.com/damo-cv/GiraffeDet</u>



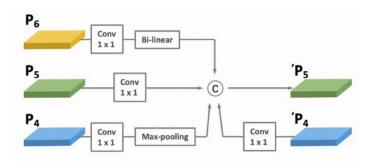
- log2n-link strengthen feature reuse and reduce redundancy

$$P_{k}^{l} = Conv(Concat(P_{k}^{l-2^{n}}, \dots, P_{k}^{l-2^{1}}, P_{k}^{l-2^{0}})),$$



Queen Fusion

- Receive more features to improve the feature representation - previous P4 down, P6 up, P5, and current P4 connections



GFPN (ICLR2022)

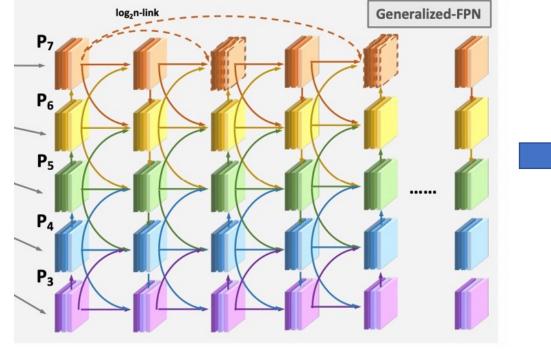
Efficient RepGFPN Existing Problem

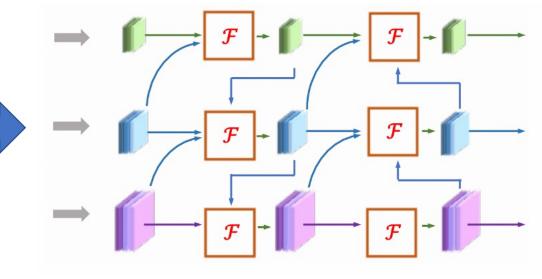
- Multi-scale features share the same num of channels
- Queen-Fusion brings inefficient connections
- Low computation efficiency in stacked nodes

Fusion Optimization

Optimization

- Different num of channels in different scales
- Remove inefficient up-sampling operators in Queen-Fusion
- Fix the num of nodes and optimize the fusion method





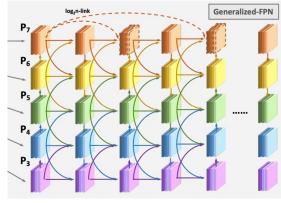
Structure of Efficient RepGFPN

Structure of GFPN

ECAlibaba Group 阿里巴巴集団

GFPN (ICLR2022) Efficient RepGFPN

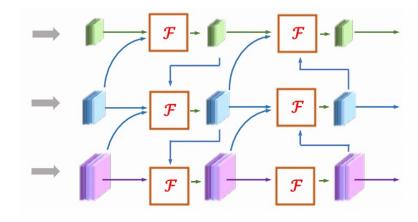
- Topology Optimization
 - Multi-scale features share the same num of channels \implies Different num of channels in different scales
 - Queen-Fusion brings redundant connections Remove extra up-sampling operators in it



Structure of GFPN

Depth	Depth Width		FLOPs	AP
2	(192, 192, 192)	3.53	34.9	44.2
2	(192, 192, 192) (128, 256, 512)	3.72	36.1	45.1
3	(160, 160, 160)	3.91	38.2	44.9
3	(96, 192, 384)	3.83	37.8	45.6
4	(64, 128, 256)	3.85	37.2	45.3

Depth/width analysis of Efficient RepGFPN



Structure of Efficient RepGFPN

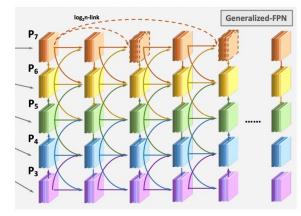
\searrow	\nearrow	Latency	FLOPs	AP
		3.62	33.3	44.2
\checkmark		4.19	37.7	44.5
	\checkmark	3.83	37.8	45.6
\checkmark	\checkmark	4.58	42.8	45.9

Connection efficiency analysis of Queen-Fusion

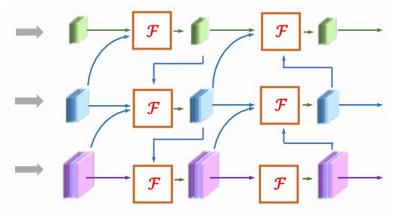
GFPN (ICLR2022) Efficient RepGFPN

- Fusion Optimization

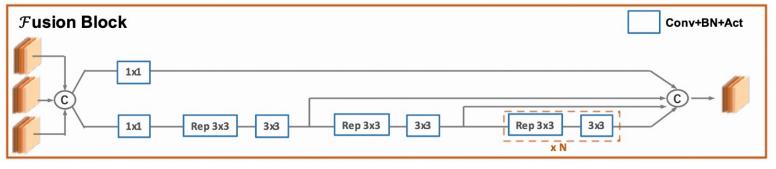
 - CSP structure, Reparameterization, Efficient Layer Aggregation Network (ELAN)



Structure of GFPN



Structure of Efficient RepGFPN



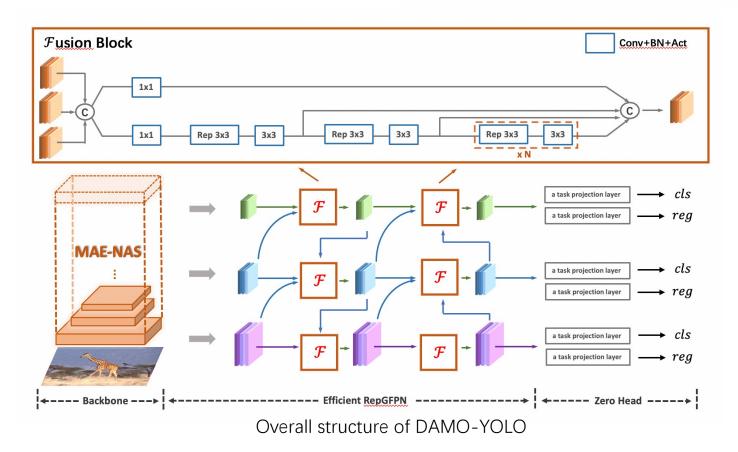
Structure of Fusion Block

Merge-Style	Latency	FLOPs	AP
Conv	3.64	44.3	40.2
CSP	3.72	36.7	44.4
CSP + Reparam	3.72	36.7	45.0
CSP + Reparam + ELAN	3.83	37.8	45.6

HeavyNeck & ZeroHead

- Only keep the linear projection layer for classification and regression in head
- More computations are used to stack Fusion Blocks in Efficient RepGFPN

Neck(width/depth)	Head(width/depth)	Latency(ms)	AP
(1.0/1.0)	(1.0/0.0)	3.83	45.6
(1.0/0.50)	(1.0/1.0)	3.79	44.9
(1.0/0.33)	(1.0/2.0)	3.85	43.7
(1.0/0.0)	(1.0/3.0)	3.87	41.2



Knowledge distillation on models of all sizes

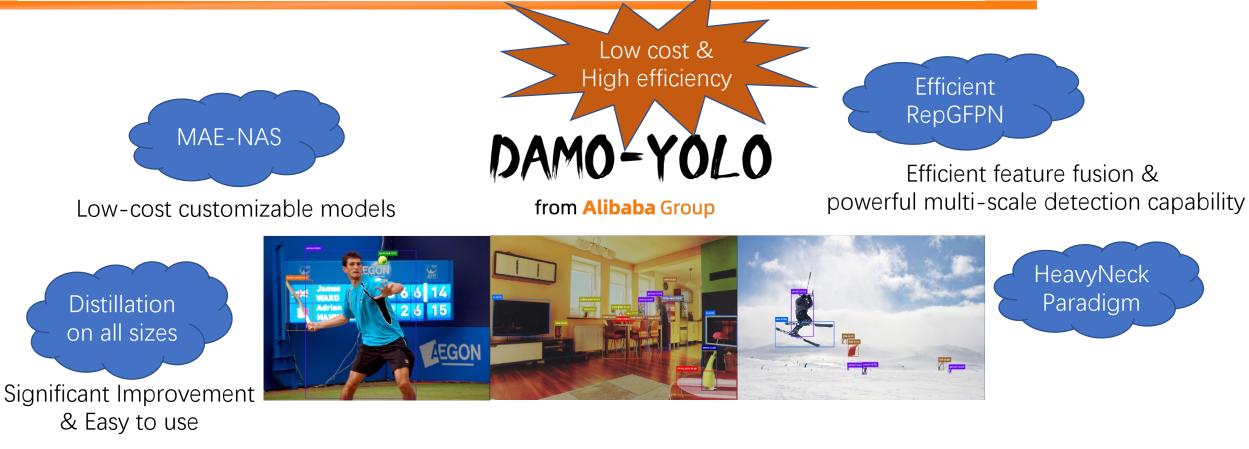
- Feature distillation+AlignModule+unbiased BN
- 1). Parameter-tuning-free, 2). Works well on all sizes, 3). Works well for heterogeneous models
- Distillation chain: L(CSP)->M(CSP)->S(Res)->T(Res)

Backbone Efficent RepGFPN 0.45 accuracy,w=10 accuracy.w=2 curacy,w=0. cls loss w=10 0.40 cls loss,w=2 Teacher Level 0 Level 1 Level 2 Level 3 cls loss.w=0.5 0.35 Unbiased BN 0.30 ¥ 0.25 **CWD** Loss 0.20 Align module Unbiased BN 100 300 150 200 Epoch The cls. loss and AP curves of distillation with Level 0 Level 1 Level 3 Level 2 different weights on DAMO-YOLO-S Student Cls Loss Zero head Backbone Efficent RepGFPN Reg Loss

Distillation strategy of DAMO-YOLO

Our distillation results on T/S/M models

Method	Size	Latency(ms)	GFLOPs	Params(N	(I) AP
DAMO-YOLO-T	640	2.78	18.1	8.5	41.8
DAMO-YOLO-T*	640	2.78	18.1	8.5	43.0
DAMO-YOLO-S	640	3.83	37.8	16.3	45.6
DAMO-YOLO-S*	640	3.83	37.8	16.3	46.8
DAMO-YOLO-M	640	5.62	61.8	28.2	48.7
DAMO-YOLO-M*	640	5.62	61.8	28.2	50.0



DAMO-YOLO is available on ModelScope now. Welcome to try it!

ModelScope : <u>https://www.modelscope.cn/models/damo/cv_tinynas_object-detection_damoyolo/summary</u> Github : <u>https://github.com/tinyvision/DAMO-YOLO</u> Arxiv : <u>https://arxiv.org/abs/2211.15444</u>

DAMO-YOLO

from Alibaba Group

Thanks for listening!

DAMO-YOLO is available on ModelScope. Go and try it~

<u>https://www.modelscope.cn/models/damo/cv_tinynas_object-detection_damoyolo/summary</u> We are recruiting research intern, and you can send your resume to xiuyu.sxy@alibaba-inc.com

